A blueprint of an office building has a scale of 2 inches:15 feet. A completed scale model of the building is about 14.5 inches tall. Estimate the actual height of the office building.

Solution

STEP 1 Write a proportion to find the height x of the office building.

$$\frac{2}{15} = \frac{14.5}{x}$$

STEP 2 Solve the proportion.

$$2 \cdot x = 14.5 \cdot 15$$

$$2x = 217.5$$

$$x = 108.75$$

The height of the office building is about 108.75 feet.

Exercises for Examples 2 and 3

4. A car travels 135 miles on 4 gallons of gasoline. How many gallons of gasoline will be used to travel 540 miles?

A blueprint has a scale of 3 cm:5 m. Use the given measurement to find the actual distance.

5. 4.5 cm

6. 8.1 cm

7. 0.6 cm
Lesson 2.6 Write Ratios and Proportions, continued

13. \(\frac{0.9}{3.6} = \frac{x}{5} \); \(x = 1.25 \)
14. \(\frac{2x}{7} = \frac{18}{21} \); \(x = 3 \)
15. \(\frac{48}{125} = \frac{3x}{25} \); \(x = 3.2 \)
16. Yes. The cross products are equal for the proportion \(\frac{9}{12} = \frac{18}{24} \).
17. 7.2 stones
18. \(\frac{37}{40} \)
19. \(\frac{61}{77} \)
20. Cardinals: 9; Chickadees and pigeons: 13.5 each

Study Guide
1. \(\frac{5}{8} \)
2. \(\frac{8}{13} \)
3. \(x = 27 \)
4. \(y = 45 \)
5. \(z = 12 \)
6. 80 words
7. 320 words

Problem Solving Workshop:
Worked Out Example
1. S105
2. 40 goals
3. 375 miles
4. 282 students

Challenge Practice
1. \(a \neq 0 \), \(b \neq 0 \), and \(a = b \)
2. \(a \)
3. \(b \)
4. \(c \)
5. \(d \neq 0 \)
6. \(e \)
7. \(f \)
8. \(g \)
9. \(h \)
10. \(i \)
11. \(j \)
12. \(k \)
13. \(l \)
14. \(m \)
15. \(n \)
16. \(o \)
17. \(p \)
18. \(q \)
19. \(r \)
20. \(s \)

Lesson 2.7 Solve Proportions Using Cross Products

Teaching Guide
1. \(\frac{3}{50} = \frac{x}{1250} \)
2. 75 in.
3. 87 in.

Alternative Lesson Starter: 12 cups water; 3 cups lemon juice; 3 cups sugar

Practice Level A
1. \(4:11 = 20 : 55 \); means: 11 and 20; extremes: 4 and 55
2. \(18:14 = 9:7 \); means: 14 and 9; extremes: 18 and 7
3. \(57:104 = 50:114 \); means: 57 and 50; extremes: 25 and 114
4. \(45x + 15(24) \)
5. \(7(1.5) \) and \(3.5m \)
6. \(7c \) and \(70(4) \)
7. \(18(100) \) and \(90x \)
8. \(3a \) and \(19(33) \)
9. \(6(21) \) and \(7(p + 4) \)
10. \(x = 15 \)
11. \(m = 8 \)
12. \(a = 24 \)
13. \(p = 53 \)
14. \(c = 2 \)
15. \(w = 3 \)
16. \(d = 90 \)
17. \(z = 64 \)
18. \(b = 64 \)
19. \(x = 1 \)
20. \(y = 1 \)
21. \(n = 9 \)
22. 27 min
23. 200 min
24. about 8.7 h
25. 60 km
26. 37.5 km
27. 105 km
28. 300 m

Practice Level B
1. \(55n \) and \(11(40) \)
2. \(4x \) and \(9(1) \)
3. \(1.8(3.8) \) and \(1.9b \)
4. \(7(a + 6) \) and \(21(4) \)
5. \(9(5x) \) and \(30(x + 1) \)
6. \(2.2(a - 1) \) and \(3.3(a - 2) \)
7. \(m = 35 \)
8. \(d = 35 \)
9. \(x = 30 \)
10. \(w = 5 \)
11. \(w = 3 \)
12. \(z = 9 \)
13. \(a = 10 \)
14. \(y = -1 \)
15. \(w = 10 \)
16. \(c = 12.375 \)
17. \(a = 3 \)
18. \(n = 5 \)
19. \(209 ft \)
20. \(85.5 ft \)
21. \(66.5 ft \)
22. \(a \)
23. \(b \)
24. \(c \)

Practice Level C
1. \(x = 28 \)
2. \(a = 12 \)
3. \(m = 1 \)
4. \(w = 5 \)
5. \(c = 32 \)
6. \(n = 20 \)
7. \(d = 78 \)
8. \(y = 20 \)
9. \(p = 15 \)
10. \(z = 2 \)
11. \(b = 2.5 \)
12. \(c = 3.2 \)
13. Because the cross products property gives you \(20 = h \cdot k \), or \(20 \cdot k = h \), as \(k \) decreases, \(h \) must increase.
14. About 0.47 minutes longer
15. 1 cm : 20 km
16. Golden Gate: 4200 ft; Lewis and Clark: 1200 ft; Francis Scott Key: 1200 ft
17. 240 freshwater fish; 400 saltwater fish; 160 more saltwater fish

Study Guide
1. \(x = 25 \)
2. \(y = 6 \)
3. \(z = 35 \)
4. \(16 \text{ gal} \)
5. 7.5 m
6. 13.5 m
7. 1 m

Real-Life Application
1. \(\frac{1\text{ inch}}{156 \text{ miles}} = \frac{2\text{ inches}}{x} \); 1312 miles
2. \(\frac{1\text{ inch}}{656 \text{ miles}} = \frac{1\frac{7}{16}\text{ inches}}{x} \); 943 miles
3. \(\frac{1\text{ inch}}{656 \text{ miles}} = \frac{1\frac{1}{8}\text{ inches}}{x} \); 738 miles
4. \(\frac{1\text{ inch}}{656 \text{ miles}} = \frac{x}{852.8 \text{ miles}} \)

1.3 inches = 1\(\frac{3}{10} \) inches
b. about 1\(\frac{1}{4} \) inches